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INTRODUCTION %J oS- <§/<Z s 637

The topic of rigid body kinematics is an anclent one and many treatments
of the subject are available. Although these treatments differ in detall,
they generally have two common factors. First of all they rely heavily upon
Cartesian orthogonal coordinates for the analyses. This rellance upon
Cartesian coordinates is no real handicap since in practice one invarlably
assumes the space to be Euclidean. However, 1t should be possible to recover
all the ususl results for a Euclidean space covered by Cartesian orthogonal
coordipates as a special case of a more general analysis valid in a
Riemannian space covered by an arbitrary coordinate system. The second
common factor which characterizes previous treatments was that they assumed
an intuitive knowledge of rigid body motions. That is, they operationally
defined rather than deduced, the nature of rigid body motions. Thus, for
exsmple, Whittaker [1] defines translations as those displacements for which
the final and initial positions of all polnts of a rigid body can be connected
by parallel straight lines while rotations about & line are those displace-
ments which leave unchanged the coordinates of points that lie along the
straight line.

With the operationel definition of translations and the use of Carteslan
orthogonal coordinates the analysis of translational motion becomes trivial

and detailed mathematical treatment 1s reserved for rotational motion. Currently




the most popular approach to the study of rotations is through the mathematical
machinery of orthogonal transformations between Cartesian orthogonal coordi-
nates. See for example the treatments given by Goldstein [2] and Mayer [3].
Orthogonal transformations leave the form and the value of the expression for
distance between two points invariant and thus they qualify as mapping of.
riglid body motions. Synge and Schild [4] discuss rotations in &n n-dimensional
Euclidean space covered by a Cartesian orthogonal coordinate system. Their
formulation is based on Cartesian tensors and represents a generalization of
the three-dimensional case.

In this paper tensor analysis will be used to discuss rigid body kine-
matics and a knowledge of tensor analysis equlvalent to that obtainable from
the references [4], [5], and [6] will be presumed. The genersl discussion
will be valid in an n-dimensional Riemannian spacej however, illustrations
of the general results will be for a Euclidean space. The discussion will be
based upon the fact that distances between neighboring points of a rigid body
are invariant during the motion.

Thg use of tensor analysis in the discussion of rigld body kinematics has
the expécted advantage that the results are presented in a form sultable for
use in any coordinate system. However, other benefits accrue from the use of
tensor ansalysis. First, it makes possible a general discussion of moving
coordinate systems and the components of the time derivatives of vectors and
tensors with respect to these coordinates. Second, 1t makes pdssible a dis-
cusslion of those constants of the motion known as the Carteslan components of
the linear momentum and angular momentum of a closed system, and shows t
these are properly regarded as a set of scalars rather tha; components of

vectors.
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We conclude the introduction with a brief word regarding the notation to
be employed in subsequent sections of the paper. We will use the summation
convention in the form "a repeated index in a subscript and a superscript
Implies a summation over the index.” This form of the summation convention
does not imply summetion when indices are repeated only as subscripts or only
as superscripts. Arbitrary coordinates will be denoted by x® while yk
wlll be used exclusively for Cartesian orthogonal coordinates. The Christoffel
symbol of the second kind will be written as \ISi] while the coveriant deriva-
tive will be symbolized by Ve
RIGID BODY MOTIONS

The followlng two sections wlll conslder the toplc of rigid body motions
in a very general way. In the first section we will considdr what conditions
must be placed on an arbitrary motion in order that it qualify as the motion
of a rigid body. The second section will then identify certain types of these
motions with rotations and translations. This identification will then immedi-
ately lead to the separation of erbitrary, infinitesimsl rigid body motions into
rotations and translations.

Conditions for Rigld Body Motions

Conslder an n-dimensional space covered by some coordinate systems with
coordinates xl, kz, xs, e + » « x% Assume that there 1s an essentially
continuous distributions of particles in thls space and examine the displace-
ments which these particles undergo. Displacements are considered to a mapping
M of the space onto itself such that the particle with initial coordinates
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shown in fig. 1.



M X - aK(xdyt) (1)
The varliable t 1s some continuocus parsmeter of the mapplng such that at

t = t,, the mapping reduces to the identity mapping.

x(x3 t,) = x5 (2)
Two points xg and xg + dxg which are neighboring points at 1t = %,

wlll be mapped into xX and x* + dxk, respectively. The relationshlp of

the dlsplacements dxX and dxg is obtained from the mapplng M since

x¥K 4+ axk = xk(xg + dxg,t) = xk(ig,t) *-gisidxg-

and therefore
x _ oxK 3
dx - axy (3)
o o)

If the positive definite metrlic tensor of the space is gij(x), then the square
of the lengths of the two dlsplacements are

2
(ds)® = g s

(ds)? = & axt axJ

dxé d.xg
(4)

where &1 is the metric tensor evaluated at. xg. Combining (3) and (4) we
can write for the change in the square of the lengths

(as)? - (a5)? = 2nyy x5 ax) (5)
where

1 foxE dx!

M14(x00t) SS[22 22 gy - &
13(Xos 25 3x) 1~ 813

is the liagrangesn strain tensor [5]. The displacements dxg are arbltrary,
and the condition that distances remaln inveriant for rigid bedy displacements

- is equivalent to the requirement that the strain tensor vanish. This can be



8L = Tx 3 & '. (6)

It should be noted that (6) has the appearance of the transformastion rule
for the covariant components of a second order tensor, however, we are con-
gldering here a mapping of the space onto itself and not a coordinate trans-
formation. That is, (6) is to be interpreted as a condition on the mapping (1)
assuming both %ij and g3 to be ¥nown rather than as an expression defining
%id in terms of gij as 1s the case when discussing coordinate transformations.

The condition (6) will’not be satisfied by some arbitrary mapping M.

To make further progress we will consider only infinltesimal displacements, that
is, displacements which take place when the parameter t+ changes from t to
ty, + dt. Tn this situation the mapping differs only infinitesimally from the
identity mepping. From expansion of the mapping (1) sbout t = t, we obtaln

My 2 X x5+ T at (7)

where

Vk(xo,t ) = gzk_L
=t

If the parameter t is the time, then \Vk would be the veloclty fleld at
o]

xX and t, With the ald of the infinitesimal mapping (7) we can now
evaluate the partial derlvatives appearing in (6) in the form

dyE
§-x-ki- = 8f + 2y at (8)
on ox



Further by & Taylbr series expansion we find for infinitesimal displacements

agkl

k1 = By * S (2 - x3) (9)

X:Xo

Slree the covarlant derivative of the metric tenmsor vanishes

Vi 8k = 'Z‘EE‘Z‘ - {%m} 8q1 - {%m} Bpy =0 | (10)

it 1s possible to express the partial derivative of the metric tensor in terms
6f itself and the Christoffel symbol of the second kind. Substituting eque-~
tioms (7) to (10) into (6) ene obtains

vk o BXI‘ \
gy = By +5-:—£ % 53 +§;§ i | | g + {‘%n} %a,z'-""(%g“} S g’m at

To first order in dt +this becomes

g11 o= + {.Sgl} Xm ¥ axi + {.’iem} g‘n &k (11)

Since the cholce of the point xg and the time t, 1ig arbitrary the subscript
"o" can be dropped from equation (11). The terms in the parenthesis will be
recognized as the coverlant derivatives of the vector field VK and since

the covariant derivative of the metrlic tensor vanishes it can be used to.lower
the index on Vk. Thus we obtaln finally the condition whlch must be satisfied
by the vector fleld V'k in order that the infinitesimal mmpping (7) correspond
to 8 rigld body displacement

Uy Vg +V Vy=0 (12)
This can only be true if V'k is a solution of the equation

Vy Vo= Qyp (13)



vhere sz(x’t) are the components of a skew-symmetric second order tensor

field. The temsor Q3 1Ls Just the vorticity tensor of fluid mechanics [4],

lel

VZ Vk - Vi VZ = ZQZk
If the wvector fleld Vk 1s to be obtained &s a solution of the equsa~

tion (13) for a known Q3 then the choice of Q;; 1s not com:élete]y

arbltrary, but must satisfy some conditioms. To establish these conditions

it will be necessary to use & generalized Stokes! theorem [4] valid in an

n-dimensional Riemarmlsan space.

aTk k»*» Xk k ke « » » %k k s s @ k
12 - M—ld‘rlz M’== vakk‘.'k d'tl M
Oxy () M 12 M-1 (M)
By M
k_ . 6 = i
12 M1 (M-1)
/Rye1
k_ k 2 s @ k
In (14) T v . .+ % is any tensor of rank (M - 1) where M < nj a2 M
12 M-1 (M)

is the extension of an infinitesimal M-cell and is a tensor of rank M, skew
symmetric in all its indices, while RM is an'criented finite reglon of an
M-dimensional subspace of the n-dimensional space which is bounded by the
closed (M - 1)-space Ry 1. The first equality in (14) follows from the fact
that the extension is skew-symmetric in all its indlces while the partlal
derivative and the covariant derivative differ by terms which are symmetric

in two indices. We will now show that the integral of ¥, Vi over a closed
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subspace R, must vanish, This lntegrel can be written as a sum of two Integrals
each over an open subspace (see fig. 2)
k1 k1 k1
VI Vk d'é'z) VZ Vk dT(z) + Vz Vk d.T(Z)
Ry Dy D4

vwhere D, and D) combine to give Ry By Stokes? theorem both of these inte-

, graia cgn be replaced by line integrals over thelr bounding curves D:L and D?

1
v, U, arkl vV dek o+ v, drk 15
(2) © L f k(1) (15)
» 4
Rp. By by
The extension dr¥ (1) is Jumst dxX mnd thus the two integrals are line integrals
around closed curves. The orientation of Dz and Dé must be such as to

agree with the orlentation assigned to Rz. This, howevery, requires that the
1~cell along Dl have the opposite orientation of the l-cell along Di. Thus
the right hand side of (15) is & sum of two line integrals each taken along the

same curve but in opposite directions and hence cancel and therefore the right

hand side of (15) is zero. But using Stokes' theorem on (13) we can write

K1 K1 11
v, Ty drfg) = Ry avfsy) = vy fy ATEE)

Ra R Ry

By a cycle permlitation of indices in the last integral and using the skew-

symmetry of diZi we finally obtain

(3)

‘1 k11
0= V V arkl V & 4V Q8 VvV @ )dv 16
[ (2) © [ (U O % g ¥ Y% iz) (3) ((28)

YR, “ Rz



Clearly the integral will vanish if we require

Vi i ¥V By + Vg B4q = 0 (17)
This then supplies us with the desired condition on the tensor sz. As was
previously pointed out it is permissible to interchange covariant derivatives
and ordinary derivetlives in the integrand without invelidating Stokes! theorem.

Thus (17) can be replaced by the equivelent requirement

Mgy + Ofy g + 0044 -0 (18)
oxl dxt oxK

Equation (18) can also be obtained directly from (17) by utilizing the defini-
tion of the covariant derivative.

The conditions (17) or (18) are known as the integrability conditions [6]
for the set of equations (13), and are precisely the requirements which must be
satisfied if one is to be able to solve equaﬁions (13). For a three-dimensionsl
space these integrabllity condltions can be written in a more recognizable form.
This is possible because in 3-space all conditions (18) are identically satis-
fled except

Bﬂlz 6931 6925

S5 o T3 T ° (29)

Further one can always assoclate with a skew-symmetric tensor Q4 an oriented

vector 01 defined by

13

at = 2 L%, (20)

ijk

where € is the oriented third order tensor defined in terms of the permita-

13k

tion symbol e and the determinant of the metric tensor g a=s

elJk

elik = (21)

&



- 10 -

The expression (20) can be solved for Qm Y muitiplying by the covariant com-

ponents €mi = V8 €ypi and using the expansion in terms of the Kronecker

tensor 51

J
Jki = 595K - sk
g elmi stm 6m§z
to obtain
Qm = €gm (22)

Using (22) the integrability condition (19) can be written in terms of the

oriented vector Qi as

d 2%) .9 02) , d3(+/z ol k
(‘é:éh" (-sa/iz l+(-\£ll..\/§vk9=o (23)

Thus in 3-space if the determinant g of the metric tensor does not vanish then
the integrebility conditions reduce to the requirement that the oriented tensor
Qk have a vanlshing divergence.

It should be noted that our initial approach to rigid body motion was
Lagrangian in nature, as typified by the mapping (1), and further that we
defined the vector field V'k in a Lagrangian manner. However in passing to
the infinitesimal case we succeeded in changing our point of view to Eulerlan.
This is analogoué to the situation in fluild mechanics where the velocity field
is defined by a consideration of the motion of individual fluid particles, and

thereafter the Eulerian approach is adopted. The Lagranglan viewpoint can be

regained by solving (13) for Vi (x,t) and then integrating the equations

dxt _ vl 1k
S = VHx,t) = gty (24)



to obtain the corresponding mapping (1). The initial coordinsates xg are
introduced as initial values in the solution of (24). We will carry out this
procedure, in s subsequent section, for the simple case of uniform rotation
and translation in a Euclidean 3-space.
Definitions of Rotations and Translations

The vector fileld Vk, which defines & rigid body displacement, must satisfy
the inhomogeneous partial differentisl equations (13) where the choice of the
skew-symmetric tensor sz is arblitrary except that it must satisfy the inte-
grability conditions (17)s Now to any particular solution of (13) we can
alweys add a solution of the homogeneous problem obtained by setting ;i equal

to zero. We thus conclude that any solution to equations (13) can be written

as

Vie = U + oy ' (258)
where

Vy Uy = Qyp (25b)
and

vy ug = 0 (25¢)

We will identify U, as corresponding to infinitesimal rotations while Uy
will be identified with infinitesimal translations. The identification is
motivated by the fact that wu, satisfies the condltion for a parallel vector
field [6]. If the identifications of U, and wuy are accepted, then (25)
is the infinitesimal version of Chasles' theorem [2], which refers to the

decomposition of a general displacement into rotations and translations.
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ROTATIONS IN A EUCLIDEAN SPACE

In the following three sections we will specilalize our genersl results to
a Buclldean space. In particular it will be shown that this speciallzation
leads to the usual relationships for rigid body rotations in & three-dimensionsl
Euclidean space.
Aralytical Expressions for the Vector Fleld Vy

Since we have assumed the space to be Buclidean we can introduce & set
of Cartesilsn orthogonal coordinates yk. In this coordinate system the metric
tensor is Jjust the Kronecker delta

giJ(Y) = 513

and all distinctién between covariant and contravariant components vanishes.
Howefer raised and lowered indices wlll be retained to permlit retention of

the summstion conventions Also in thls coordinate system the Christoffel sym~
bols vanish identically and thus coverient differentiation and ordinsxy differ-
entlation become identical.

To distinguish the components of the rotation tensor Q;)x in some
arbitrary coordinate system from its components in & Cartesian orthogonal co-
ordinate system,bthe latter will be denoted by Wy
equdfions (13) and the integrability conditions (18) become

With this convention the

3y

—Z = {26)
dy? L

Owyy  Owyy  Ooyy
+ -0 27
dy* +5yz oy® . (27)
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In general it is to be expected that Vk will be a function of all the coordinates

and the parameter + which is dlsregarded for the moment.
i
Vi = Telyyy2, s = = y7) (28)

However from (26) with (1 = k) we have by virtue of the skew-symmetry of
=X =0 (kx not summed) (29)

Thus V. cannot be s function of yk. And thus 1ts derlvetive cannot be a

function of yk

o

Yy - »
—;‘%‘- = ka(yi,i ¥ k) = (30)

Q/

This implies that a5y cennot be taken as a function of yk. Interchaﬁging
the roles of 1 and k in (30) shows that, ay; cannot be a function of yi.
However a@y) and @y differ only in sign and thus @y, can be neither a
funiction of yk nor yz.
oy = apge(ytsl ¥ 1,K) (31)
The integrability conditions (27) impose additional constraints on the
functional form of @y} in fact, these conditlons are such that wyy cannbt
depend upon sny coordinates. To see this let us focus attention on the com-
ponent anp by writing out equations (27) in detall for the cases 1 = 1,,

k=2,i=3,4’5...n



dmp _Owps  Oom o
N1 2
S oy oy

_Oay, _ am24++ O,y - 0
oy oyt dy2

) Sy _ Oy + Qg -
30 dyt P

(32a,b,c,°--~)

0

. LY .« & s 3 e & & &

From {31) it can be seen that w5 and all its derivatives may contain only the
variables ys,yé, -+ - y%. However, by virtue of (31), the first term on the
right&hand side of (32a) can be a function of yl,ydy® - * ¢ ¢+ y0 vhile the
next term may contain the variables yz,y4,y5 + « ¢« yB, Thus the left hand
slde contains the variable y3 which does not appear on the right while con-
versely the variables yl and yz appear on the right but hot on the left.

If (32a) is to be valid for an arbitrary point in the space then W, may at

most be linear in the variable y3

while oz must be linear in yl and wzgy
linear in y2. Similarly (32b) implies that an, must be linear in y* while
(32c) implies linearity in y°. Considering the remaining eduations of (32)
shows that o must be a linear function of the coordinateé if it is to contain
them at all. Considering other components of Wy g in 1ike fashlon we reach

the conclusion that @y can be, at most, a linear function of the coordinate
variables. Alternately this can be expressed by sayling that Vk can be no

more than quadrastic in the coordinate variables. Therefore the most general

form of Vk can be written as

Yy, =
ESS

o

AijyZyj + Bklyl + Ck (33)



where AkZJ’ By and C, are independent of the coordinate. We point out
gt this Juncture that the use of indices on A, B and C 1is not to be
construed as implying some tensor character to these quantities but is only
8 convenient notation to indicate summetions. With no loss in generslity

wWe can assume Aij to be symmetric in the last two indileces

Ayyy = Agyy (34)
Differentistion of (33) gives
oV

Wix = 1 = Akizyz + Byi (35)
v

From the skew-symmetry of Wy We have

Oppe + Oy = (Bgy + Ay )yt + By + By, = 0

If this is to be satisfied for an arbitrary choice of yZ then we must have
Ay = By - (36)
Big = ~Byy (37)
Equations (34) and (36) give two conditions on the Ayyy, while a third can be
obtained from the integrability conditions (27). Using (35) the integrability
conditions can be written as

Agys + Apxg + Mg = O (38)
However from the syﬁmetry properties (34) and (36) of the Ay,; Wwe have

Agpi = Mgk = ~Apix

Combining this with (38) we find that

Aixy = O

Thus the tensor 041 cannot be a function of the coordinates but can only

depend upon the parsmeter t

Wy = o1 (t) (39)
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In some coordinate system which is not Cartesian this will not in genersal be

true since we have from the usuasl transformation rules

J
g (%) = gy w14(%) (40)

Since the Aqy; vanish we have from (35)

B = Byy (41)
And therefore (33) can be written as

Vg = -yt + Cy (42)
The derivative, with respect to the coordinaste variables, of the first term

of (42) gives wyy While the derivative of the second term vanishes and thus
we se¢ by comparison with (25b,c¢) that the first term is & particular integral

of (26) while the second is a solution to the corresponding homogeneous problem.

Therefore we have the identification
- 1
Uy = —0,Y (43)
Using (22) in Cartesian orthogonsl coordinates in a three-dimensional
space we can write the rotational field (43) in the more femiliar form
And therefore
s Z -
V= Ty + kamﬂy +Cp (46)

In the notation of vector analysis (45) is just

T =gXxg



And thus we can write (46) in the form

T=@xXr+g (47)
It should be noted that although yZ can be considered & vector for the group .
of centered affine transformations, it is not a vector for some more general
transformstion. In the latter case either (43) or (45) are only to be re-
garded as representing the dependence of the vector field Uk upon the
Cartesian coordinates yz. The components In some other coordinate system
must Qe obtained by the usual transformation rules for a vector.

We conclude this section by showing that in & Buclidean 3-space the
rotational part of the motion is always perpendicular to the vector Qi, that
1s, UK = 0. Working in Cartesian coordinates we have from (45)
ng# = ekamjyzwk - -ejkzwkyzwj = -Ujaﬂ
And therefore
Uyt = 0
Since this is & scalar equation it is wvalid for all coordinate systems in the
Euclidean 3-space. Thus the vector field Qk can be thought of as determining
an axis of rotation in & Buclidean 3-space.

Particle Trajectories in s Buclidean 3-Space

It was previously indicated that the mapping (1) could be regained by an
integration of equation (24). This integration can be readily accomplished
in & Buclidean 3-space covered by Cartesian coordinates in the simple case
where the vector field Vk is independent of the parameter +. This will
be true if the rotation tensor Wy and the vector Ck are independent of
t. Instead of working with the tensor ;) we will use the assoclated oriented

vector mi. Thus we write for Vi



Vi = egpaby® + ¢4 | (48)
The system of coupled first order differential equations (24) now becomes
!

Sk gF~ = eiZRmzyk + Cy | (49)
We want the solution of this system of equations subject to the initial condi-
tions |
y(0) = 7

The system of equations (49) is most easily integrated by the method of

La@lace transformations [7]. The transform of yk will be written as

, ' t
: L'{yk) = e P yR(t)at = Y¥(p)
A

Taking the transform of (49) we obtain
: Tywk _ C1 1

where we used the relations

- ’ k ‘
. {%}“ BT5(p) - 7
N _
L {1 -
{1} = 5
The system of equations (50) is a set of inhomogeneous linear equations for
the three unknowns YK (k = 1,2,3) which can be solved if the coefficient

matrix



can be inverted. If we denote the inverse by A;i it can e shown by direet

inversion that

11 _ 1 211 _ o113 1,47
AL o ————-—-—-—-—-—p(pz g [p*8 peltdny + ol ] (52)

where we have written a® for a)icoi. By direct multiplication it can be
verified that

11 Y
ATAyy =By
Multiplying (50) by A!l we obtain

1 R
vy 2=1 14 eldf =k 1o TK 131 1 1,1

¥ {p) = ——s——m= | D570 + D(C? + etlw5, FE) + (wlwF* + etdlw.c,) + = ololc
: (2 + o2) ‘: Pik D S R 1

(53)

Performing the multiplication and using the partial fraction expansion

1 1 1
p2(p? + o) mzpz ?[p? + a?]

we finglly obtain

Iolg

TR mz) (02 + o?) a?

olasle
wée-C
+—-—]-1—--—-- oszmk?k + ericojCj] +—]-'§ 5 L .
P(P + w ) ’ P ® '

(54)

-

Taking the inverse transform of (54) using
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1 1l -« cos wt

p(p? s+ of) o?

L’l,—}g -t
- 1 e8]

and defining a unit vector A by

1o ol

Voox @
O
there results the expression

¥t = RIF" + Blck (55)

1,1

where

‘B}{(m‘b) = FJ; [(.8%: - 7\17\k)sin wt - eZJj‘?\JSj_k cos wt + 7\7'7\kaot + eZJiKJ‘éik] (56)
and

aBy
Rﬁ(wt) =35 = (Si - )zkk)cos ot + ezjikjﬁik sin wt + szk (57)

The equations (55) correspond to a particular mapping of the form_ (1)
where our initial coordinates ?k are used in place of the former notation
for initial coordinstes xg. These are the trajectories of the particles of
a rigid body when the motion of the rigid body is characterized by a constant
oX and Ck.

Orthogpnal Rotation Matrices

We are now in a position to show that an orthogonal matrix can be used

to describe a pure rotational displacement. For a pure rotation the constants

Cy in {55) must be taken as zerc. Thus it becomes apparent that the matrix

Rﬁ cen be used to completely characterize the rotation. It is therefore
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appropriate to call this a rotation matrix. In (57) ot appears as the argu-
ment of the trigonometric functions sine and cosine. Therefore it seems
reasonable to associate wt with the angle of rotation 6 sabout amn a¥is
specified by the vector oF = oM. The magnitude of the vector o is to
be associated with d6/dt. The matrix R%{ is identleal to the rotation matrix
given by Meyer [3] as his equation (5.12). This same matric appears in equa-
tion (7) of the note by Grubin [8]. His equation (7) corresponds directly to
our equation (58) with Cy = O.

The rotation matrix is an orthogonsal matrix, that is, it satisfies the

relations

1:3knl _ a1l
RJsJ Rl = 5

1. 1
RyByqRy = By

These relatlons can be verified with some algebraic tedium. Thus one can

easily solve (55) for the T in terms of y’ as
o1 plol | pigdal
yT o= Ry RszC
where v
iz a1 _ sl _ad _ Jisk ' i ,
Ry =28 R?E’kl = (82 X 7\z)cos 6 - &N, sin 6 + NN (58)

- {s the inverse matrix (in this case also the transpose) of the matrix R}Z{.
inl _ sl _ pipl B
RRy = By = RyRy m (59)

3

For the particular case of a rotation about the y- axis AE - (0,0,1), the
4

matrix R% takes the familiar form

(cos 6 sin 6 O\
{sin 6 cos B O

0 0 1//
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where the upper index labels the rows while theﬁlower labels the columns.
MOVING COORDINATE SYSTEMS

Tn discussing rigid body dynamics it is often convenlent to work in s
coordinate system rigidly attached to, and moving with, the rigid body [2],
[9]. We will now consider how coordinate transformations between frames in
relgtive motion differ from coordinate transformations between frames with
no relstive motion.
The Relstionship Between a Mapplng and a
Cocrdinate Transformation

An integration of equations (24) subject to the initial conditions
xk(t = 0) = P gives us & set of equations of the form
£ = (T, ) (60)
This integration was explicitly carried through for a particularly simple case
in a previous section. Because of the way in which (60) was obtained it
should be considered as s mapping of the type (l). However it can also be
regarded as a coordinate transformation between an x-frame and an X-frame
moving relative to one snother with a rigid body motion. Since the 2! are
fixed numbers independent of the time %, it 1s reamsonable to regard the
E-frame as a coordinate system sttached to & rigid body and moving relative
to a "stationary" x-frame. For present purposes there is no need to assume
that the x-frame is an inertial frame. This question enters only when one
considers questions of dynamics rather than kinematics. The coordinate trans-
formation point of vlew will be adopted in the next section where we will
place particular emphasis on the transformation properties of the intrinsic

time derivetive of vectors and tensor.
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Transformation of the Intrinsic Time Derivative

The components of an arbitrary vector or tensor transform in the ususl
way under the transformation (1) provided that the vector or tensor under
consideration is not obtained from another vector or tensor by intrinsic
differentistion. Thus the ¢ontravariant components Eij of some arbitrary
second order tensor in the ®-frame are relsted to the components GK! in the
x-freme as
gld . 3% 3 g (61)

: 3xF axt

The only thing to observe here 1s that even though the sz mey possibly not
be explicit functioms of time, the components in the E~frame, namely Eij,
will in genersl depend explicitly on time t since the partial derivatives
ox1 /o%X  are explicit functions of time through the relations (60).

The situastion becomes somewhat more complicated if we consider the

intrinsic derivative of @K' which is defined to be

kZ kZ . .

where the preflx on the Christoffel symbols indicates that they are evaluated
in the x~frgme. This extra index on the Christoffel symbols is necessary here
sinée we will be desling with expressions involving Christoffel symbols in two
different frames. The definition (62) of the intrinsic derivative is vélid

in all coordinate systems related to each other by a coordinate transformation

which is independent of +t. However for transformstions of the form (60) it

is necessary to slter the definition of the intrinsie derivaetive in a moving
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coordingte system if Ssz/St are to be components of a tenser for such trans- )
formations. We now seek to establish the appropriate definition for the

intringic derivative in a moving frame, that is, we wish to establish an ex-

pression for <8 which is defined by

sc™d _ 3% 3x) sa : (63)
5t T ,E 30 oF .

or equivaslently

8c’? _ ax* ox® sel? o " (64)
% " o 3g) | OF
oxX X

We teke as our starting poipt the expression relating sz to GiJ namely

N
oEl . 8% ox_ i (65)

3 o)

Differentiation wlth respect to time t gives

ik uv,axk ax? dGd +Bxk Gid 4 éggi +_5_3_czai:l g _B_BSE : (66)
ol ¥ o ®\wd) W B\

k

The time derivative of the partigl derivative of x— with respect to %t can

be written as

4 Bxkv‘x‘ 32" + Bt = (67)
At \axt/) dt oxt  oxJ oxt db | T

"PBf the order of differentiation is chéhged in the first term on the right we

have Tor this term

R A T A
st oml axl \ov ) al o \3t ) P o
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where we used the definitioh of Vk (7) in the last step. The second partial
derivaﬁives appearing in the second term of (67) can be expressed in terms of

Christoffel symbols and first partial derivatives [5].

st Eya. ()eene
a0 ol =L AR 3%d >zt

Therefore-(G?) can be written as

afa) _axtovt, ot | fB)af aawd
i \axl) ot axt EVY @ 9 %! oxd 9F

However by & differentiation of (80) we find

k- K gyl
ax¥ _ dx¥ Bx = vk 40X dx° (68)
at ot a;l dt L dx! 4t

‘ Using this in the last term of the preceding equation and combining terms we

obtain
a foxk) alavE L @) axt d'xj }axﬁ v“)
dt \5%l/) o%! axt % JZ EE“ dt aB aiz .
| g S:T at) V) T e T A T w
|
| g vy _a__kexti(k o ax
| dxl oz dt oxt dt

(69)
Msking the appropriate changes of indices in (69) and substituting into the
last two terms of (66) and using (65) to simplify some of the terms there

results the expression
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k1 X N | gald
o - 2; :; ‘?gt - jﬁ} gip & Eee {QB} GB) & = |+ ¢ v v+ 6T v, vE

(70)
We will denote by 8G.J/dt the terms contained in the brackets of (70).
The last two terms in (70) are both contravariant components of second order
tensorg and thus obey the usual rules of transformation and therefore (70)

[
can be written as

K1 s kel [amld |
8G ~ _ 9x” 0% [Sgt + 3T v 7 v + T v, vl:\ | (71)

dt Bxi ij
Now if the two coordinate systems are moving relative to each other as rigid
bodies, then the gradlent of the velocity field V, can be replaced by the
tensor Q.. (13). With this condition we can, by a comparison of (71) and (64),

" make the definition

a6t . &G

wirg: ) L wrisel :
= ST G 0+ G nr' ‘ (72)

This definition can be extended to the contravarisnt components of higher order
tensors and vectors elther by a procedure identical to that followed sbove or
by snalogy. In elther case we can write, for example, for the contravariant

components of & wvector

i i =1 _ . :
e = e + T - B Gt (73)

o

The formulae corresponding to (72) and (73) for the covarisnt components of
vectors and tensors can be established by an identical procedure. Thus for s

second order tensor one begins by differentiastion of
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This procedure gives the definition

5tJ = 5tj + G0y + GerFi (74)

while for vectors

)

8G;

mlo1
]
He

i

o Ar
= T +GrQ.i (75)

.o

The above formulae shows that only the rotational motion characterized by the
tensor {3y, affects intrinsic differentiation.

Iptrinsic differentiatlion in a moving coordinatehsystem satisflies the ususl
rules for differentiastion of sums and products &as can easily be vefified using

the definitions (72-75). Thus if we take G = AIBJ

5(a'8Y) _ (E'F) , piwred . FrRinl
L LE) +AFRY + TB,

But

Eﬂ!ﬁgﬂl-u ii.éﬁi +f§j§£3
3t 8t B8t

and therefore

S(A'BY) | gt 8B L 3rgea| 4 39| SR 4 mnl
8 r 5t r

5t
8B =1 BA
=T+ B

This section will be concluded by applying (74) to two particular tensors,
the metric tensor gij and the tensor Qij‘ Since the intrinsic derivative

of the metric tensor vanishes in the x-frame, it also venishes in the X-frame.

- 5r .= 7T
5T = 0 = X + girQ.J + grjﬂ,i
885 Séi

S.e . .m 3
=——8-t—‘+Qij+jS=—-6‘-t-—



This result can be used in connection with (72) to establish the expression

for the intrinsic derivative of tensors with mixed components. We next =spply

(74) to 913'
) &

1 i 5. or 5 .o
ORI
However

Uy = 0 gy = -0

And therefore

Biyy, By
5t ot
APPLICATIONS

In the concluding two sectlons of this paper some of the general discussions
preséhted earlier will be applied to two speclific topics. The first will be a
derivation of the constants of motion known as the linear and angular moments
of a\blosed éystem [10]. The second will be a derivation of Newton's equatipns
of mqfion in & non-inertisl frame.

Lineér and Angular Momentum of & Closed System

Consider a ciosed system of N particles moving in a three-dimensional

spacé covered by a coordinate system x5.  We mssume that the particles are

point particles possessing no internal degrees of freedom. If ﬁk are the
»

coordinates of the uth particle, then for a conservative system (all forces

«
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derivable from & potential) the Lagrangian equations of motion for the system

are
d {on oL
q % o (76)
G () R
\ H 2
where ik has been written for dxk/dt and where the Lagrangian function is
2! : 3}

Tt

We will assume that the mechanicsl properties of the system are unaffected
by any rigid body displacement of the system. This assumption when applied to
transigtions refers to the homogenelty of space and when applied to rotations
refers to the isotropy of space [10]. At this point our discussion requires
no distinction between translations and rotations, however to obtain the con-
stants of the motion in the usual form we will make the distinction at s
later stage. Now a rigid body dlsplacement of the system is equlvelent to the
introduction of & new coordinate system 2K by the transformstion
2" = 2(xt,8) (77)
where { 1s s parsmeter of the f?ansformation other than +%. Now the form of
the equations of motion (76) 1s unaffected by & coordinate transformation of
the type (77). And thus if the mechanical properties of the system are to

remain unchanged the velue of the Legranglan must not be affected by (77).
L(z%,25,8) - L{«,%5) = 0 (78)
Since (77) must hold for sll rigid body displacements, it must hold for -

the infinitesimal rigid body displecements, which'by analogy to (7) can be

written as
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2 = 2+ at v(x,t)

Differentiation of thls expression glves
2k _ 3k |, AV
Z=};:+d.__._.

' g‘d’c

By a Taylor expansion we have to. first order in the infiniteéimal at

K 3k by - n(xK, k) o 3L yk 3L_ vk
L(Z-‘;é ,f_:,) L(x Jxk) ag Bxk v (%\(:C) + Bxk 3t (%:g)
) N .
A

Substituting the equations of motion 676) in the first term and combinihg with

‘the condition (78) we obtain

‘And thus we have the constent of the motion

vE(x,t) éﬁﬁ = const (79)
ox

N

Now,-aL/Bik is the momentum canonically conjugate to the coordinate §k and
A ‘

is a vector since

= Ok .1
Px & —— = mguyX (80)
Nk A
o)

Thus the constants of the motlon represented by (79) are scalars. Since (79)
must be true for all rigid body motions 1t must be true separately for infini-

tesimal rotastions and trenslstions. Thus separately
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Zuk({.,g)ﬁk =zuk(>{,g)§k = const v(81)
A A ‘
ZUK(%Q)%}{ = Zuk(}{‘ :C)ﬁk = const (82)

Equations (81) and (82) appear to supply us with an infinite number of
constgnts of the motion'however in reality there are only six. This is becsuse
in a three-dimensionsl linear vector space there can only be three linearly
independent translations gk (s = 1,2,3) and three linearly independent rota-
tions gk (s = 1,2,3). To displsy the constants of the motion in the ususl
form we return to a Euclideasn space covered by CartesianTorthogonal coordingtes

which give for the canonicel momente (from (80))

A A AN ‘

For the translational displacements we take unit vectors mlong the coordinate
lines thus

Iy = (1,0,0)
u = (0,1,0)
2

gk = (0,0,1)

With this cholce for u, We have from (81) and (83) three constants of the

P2 KN 78 84
S S =
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For the rotational motion we choose as linesrly independent displacements,

those obtained when the vectors %3 are unit vectors along the coordinate
lines

fk = (1,0,0)

%gk = (0,1,0)

%)k = (0,0,1)

Combining (82) and (45) with this choice we obtain

M= E}\: g'kpk ='g m( esikxi'xk) (85)

Equations (84) and (85) will be recognized as the usuel definitions of
linesr momentum and angulsr momentum of & system of particles [2],[10]. As
already pointed out E and g are scalars however the g can be considered
as components of a vector for all affine transformations while g are vector
componénts only for centered affine transformations.

Newton's Law of Motion in a Non-Inertial Frame

In this final section of the paper we develop the form of Newton's equa-
tions in a non-inertisl coordinate system and show that for the special case
of Cartesian coordinates this reduces to the usual equations. We take as

our starting point Newton's equations in an inertisl frame x*

BV 1
k dV
szmak-_-m—a—t—=mgkz§6— (86)
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where

—--—-.-xl +( }xli

Iin 8 non~inertial frame ?ck this becomes

Bv. 1
= k — ov

However from (68) we can express the velocity vE  in the form
vE = %k = o T+ ®) (88)
Bx

where we have performed the substitution

Thus from (88) we can write
-\7'2 - vl + iz (89)
Using the expression (73) for the form of the intrinsic derivative we have then

1 YA =1 — . Yos
SVSEV + X r7,+i.l~dl

90
5% 5t 5t an r (20)

L as observed in the non-inertisl

Now ‘63.61/61: is just the acceleration a
frame. Further the derivative 572 /St of the rigid body velocity field can

be written as

avz Ve

3——-+ VVI
%%—*-'XQZ

Making these substitutions into ( 90) we obtain the expression
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.

1 =1
v =1 rl 1 ov \
= Q 2x¢n + 9
Sl e (91)

Upon the substitution of (91) into (87) we obtain after a slight rearrangement

= — — = ik
= Fy + kar'}'(r + karV‘r mgkz g—' (92)

If the tensor @y, is replaced by the oriented vector 1 using equation (22)

then equation (92) takes the form
— = - =i - 3-1_1z
mey = Fk’+ ZmE.kriX s -l-‘mekriv Q mgkz 3—- (95)

Finglly writing the rigid body motion as & sum of rotational and translationsl

velocities by means of (25a) expressed in X-frame we have

- - = - =l= - = Vil Sut
mey = fk + Zmekrixrﬁi + mekriUzﬂi + mekriuzﬂi - mgkl 3{‘ = m@kl Fl.:_ (94)

To meke a direct comparison with the ususl expressions for Newton!s law
in a non-inertial frame we agsin specialize to Cartesian orthogonal coordinates
in & Ruclidean space. For these conditions we will shortly show that for those
frames which are moving uniformly relative to an inertisl that the last two
terms cf (94) are zero. If the motion is purely translationai, the remaining
terms vanlsh since these are proportional to ol which is zero in thls case.
Thus the equations of motion in a uniformly translating coordingte system are
the same as in an inertisl coordinate system. If the motion is purely rota-
tional T is zero and using (45) in conjunction with (55) with ¥ a0 we
find that (94) takes the form |

mEE = FE m[kll‘[f)ly + sxirg, (ers a)s—t)] (95)
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In writing down (95) use was made of the fact that in Cartesian orthogonal
cocrdinate systems indices mmy be raised or lowered at will. In the nota-

ticn of vector analyses (95) can be written as [2] |
I;J.f.‘ﬂz—m[zﬁw‘x'%q-gX(sz)] (96)
In {96) the use of a bar over symbols to designate quantities in a non-inertial
frame has been discontinued but itvis to be understood that this equation is
only valid in a non-inertial coordinste system. The second term on the right
haad side of (95) or (96) is the Coriolis force while the last term is the
centrifugal force.

In an earlier parsgraph it wes asserted that avk/at was zero for a
non~-inertial frame moving uniformly relative to the inertisl frame, that is,
vhere of and 0K are independent of time. But this is preclsely the situs-
tion for which (55) gives the relationship between the inertial and non-inertisl
frames. Thus we are in & position to explicitly evaluate OVE/dt. By differ-

entiation of (55) we have

Z [ - .‘ *
szg%—aRli‘y“kthlZ{Ck:ﬁ.};.R%{ (97)

To get gquation (97) in the same form as (48) it would be necessary to eliminate
7% in terms of y' wusing (55) in the form

Sk _ okl _ okninl

7 = gyt - @Bl

However we are interested here in le rather than Vl and thus we retain

Sr‘k. Since

= )
T o Oyl . gyl
oyt :

y
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We have as the analytlcal expression for &
o @ity + ok

And since Ck is independent of t©

1

oy d Rk‘z =J
Pl ) R

ot 5 ( 1 J)y

By direct multiplieation it can be readily shown that
kel o ekilag.s. .
R-LRS = @ wlsz
which is independent of t. Therefore we have immediately that Bﬁ&/st

zero for this cease.

is
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